Introduction to the Builder Pattern in PHP

Background

The Builder pattern is one of the “Gang of Four” (GoF) design patterns. It is classified as a creational design
pattern—i.e. it's intended to address some brittle historical practices (i.e. anti-patterns) for creating object
instances.

When using the Builder pattern, we create an object of one type by creating an object of a second,
supporting type, invoking a number of methods on the second object, ending with a method that returns a
fully constructed object instance (often immutable) of the first type.

Scenario

Requirements

A client has asked us to develop a random password generator component. In joint design conversations,
we agree on the following minimal technical and functional requirements:

1. The generator functionality will be abstracted and encapsulated into a class; instances of the class
will be created on demand, and used to generate 1 or more passwords in a single request.

2. The generator must be configurable, to allow inclusion/exclusion of the following:

o Upper-case letters from the Latin alphabet;
o Lower-case letters from the Latin alphabet;
o The digits 0-9;

o Punctuation and (printable) symbols.

3. Against our advice, the client insisted (and we accepted) that for each of the above character sets, the
generator must be configurable with a minimum count, to enforce policies such as “A password must
include at least 1 upper-case letter, 1 lower-case letter, and 1 special character.”

4. In general, the generator should support all of the punctuation and symbol characters in the Basic
Latin Unicode block, except for the space character (i.e. valid characters are in the ranges \u0021-
\uB02F , \uBB3A-\u0w40, \ude5B—\uvv60d , \uee7B-\ulBB7E ). However, on exploring the contexts in
which the generated passwords might be used, we agreed with the client that the generator should
support some constraints on punctuation and symbols—specifically, the generator must allow, on
initialization, the exclusion of a subset of punctuation and symbol characters. (More generally, we
may opt to provide a mechanism for excluding any characters that would otherwise be considered
valid.)



5. The generator must allow optional exclusion of the mutually ambiguous character pairs, “1” & “I”
(lower-case “L"), and “0” (zero) & upper-case “O”. This option must be enabled by default—though it
has no effect if digits are excluded.

6. The generator class should have no dependencies on external configuration files. All of the above
configuration should be specifiable by the class’s consumer.

7. At our insistence, the lifecycle of the generator object will be one-way: initialize/configure a
generator instance, then use it; changing configuration options on a generator instance after we use it
to generate passwords will not be supported.

Technical Specifications

Our next task is to propose an API for consuming the class—that is, for instantiating, initializing, and
invoking methods on instances of the class. Very quickly, we come to the realization that, with the wide
variety of configuration options, initializing the generator could become pretty complicated. In many
(maybe most) use cases, we won't need to change more than one or two of the configuration options from
their default values—but in a few cases, we'll need to change most of those options. We need to come up
with an initialization approach that not only makes the generator component easy to work with for the

simple use cases, but flexible enough for the tricky ones.

Approach 1: Constructor tricks

e Constructor overloads

Can we have multiple constructor methods, with different numbers/types of parameters, to
support the range of configuration scenarios we anticipate?

No. PHP doesn’t support constructor method overloading (or overloading of any other method or
function, for that matter). In PHP, the signature of a function or method—which must be unique
within the scope of the function or method—consists only of the method name. (This is also the case
for JavaScript, Python, and C—though not for C++, Java, C#, and VB.NET.)

Even if we could use overloaded constructors, such an approach would arguably be a poor fit for this
situation. A small number of constructors might be acceptable, but we could easily end up with many
more for our generator—following a practice we sometimes call the telescoping constructor anti-
pattern.

e Constructor with several parameters
Can’t we can define a constructor with parameters for all of the configuration options?

We certainly could—and we'd end up with a constructor that’s much more complicated to work with
than we'd like. It would have the necessary flexibility, but it wouldn’t be simple to use even in the

most basic use cases.

e Constructor with default parameter values


http://vb.net

Can we define a constructor with default values for one or more parameters?

Yes. We might do something like this:

class PasswordGenerator

{

private SupperIncluded;
private SlowerIncluded;
private $digitIncluded;
private SpunctuationIncluded;
private SambiguousExcluded;
private SminUpper;

private SminLower;

private SminDigits;

private $minPunctuation;

// More fields here ...

public __construct(
bool SupperIncluded = true,
bool $lowerIncluded = true,
bool SdigitIncluded = true,
bool SpunctuationIncluded = true,
bool SambiguousExcluded = true;
int SminUpper = 0,
int SminLower = O,
int SminDigits = @,
int SminPunctuation = O,
// And so on ...

Sthis->upperIncluded = SupperIncluded;
Sthis->lowerIncluded = SlowerIncluded;
Sthis->digitIncluded = $digitIncluded;
Sthis->punctuationIncluded = SpunctuationIncluded;
Sthis->ambiguousExcluded = SambiguousExcluded;
Sthis->minUpper = SminUpper;

Sthis->minLower = SminLower

Sthis->minDigits = SminDigits;
Sthis->minPunctuation = SminPunctuation;

// More initialization code here ...

// More methods here ...

Unfortunately, this doesn’t improve matters much. When we initialize PasswordGenerator using this
constructor, we can only omit arguments at the right end of the parameter list; we can’t skip some in
the middle and specify others after that. We might work around this by using null default values,



skipping the types on the parameter declarations, or using nullable types (where a question mark
precedes the type in the parameter declaration); any of those options would let us specify null
arguments in an invocation to indicate that the corresponding parameters should take their default
values. But we'd still have a long list of parameters, and the arguments we pass on invocation would
have to match the parameter order exactly. Producing effective documentation—not just for the
generator API, but also for any code that consumes the generator component—would be a challenge.

Combining multiple Boolean values into a bit field

Rather than use several bool parameters, can we combine them into a single int, treated as bit
field?

Indeed, this would reduce the number of parameters significantly in a situation like this one. Consider
the following:



class Generator

{

public const UPPER_INCLUDED
public const LOWER_INCLUDED = 2;
public const DIGIT_INCLUDED = 4;
public const PUNCTUATION_INCLUDED = 8;
public const AMBIGUOUS_EXCLUDED = 16;
// More option flags here ...
public const DEFAULT_OPTIONS =
UPPER_INCLUDED
| LOWER_INCLUDED
| DIGIT_INCLUDED
| PUNCTUATION_INCLUDED
| AMBIGUOUS_EXCLUDED; // Maybe more ...

(¥

private SupperIncluded;
private $lowerIncluded;
private $SdigitIncluded;
private SpunctuationIncluded;
private SambiguousExcluded;
private SminUpper;

private SminLower;

private SminDigits;

private SminPunctuation;

// More fields here ...

public __construct(
int Soptions = DEFAULT_OPTIONS,
9,
9,
int SminDigits = 0,

int SminUpper

int SminLower

int SminPunctuation = O,
// And so on ...

// Unpack the option values from the bit field.

Sthis->upperIncluded = ((Soptions & UPPER_INCLUDED) > @) ;
Sthis->lowerIncluded = ((Soptions & LOWER_INCLUDED) > @) ;
Sthis->digitIncluded = ((Soptions & DIGIT_INCLUDED) > @) ;
Sthis->punctuationIncluded = ((Soptions & PUNCTUATION_INCLUDED) > @);
Sthis->ambiguousExcluded = ((Soptions & AMBIGUOUS_EXCLUDED) > ©);

// And so on ...

// More initialization code here ...

// More methods here ...

Now we might create an instance of PasswordGenerator that uses upper-case letters and digits (for



example) this way:

new Generator(
Generator: :DIGIT_INCLUDED | Generator::UPPER_INCLUDED | Generator::EXCLUDE_AMBIGOUS,
0, 0, 0, 0,
// And so on ...

We've reduced the number of parameters, and we no longer have to remember the order of our
option flags. Also, since those flags are all powers of 2, we can combine them for the invocation using
the bitwise operators (recommended), or just addition—for example, note that 1 + 2 + 8 gives the
samevalue(11)as 1 | 2 | 8.

On the other hand, only Boolean parameters can be packed into bit fields in this fashion. Also, while
many “old school” programmers are used to bit fields, a less experienced programmer may find them
quite confusing, and will need to rely more on external documentation, rather than the APl itself
being more effectively self-documenting.

Using an associative array for configuration options

Can we simply specify all the configuration option flags and settings as elements in an associative
array, or properties of an object?

In fact, this is an approach used by many PHP, JavaScript, and Python libraries: rather than initializing
a complex object (or invoking a complex method) by passing a long list of arguments, we pass a much
shorter argument list, where one or more of the arguments is itself an object or associative array.



class Generator

{

public const UPPER_INCLUDED_KEY
public const LOWER_INCLUDED_KEY = 'lowerIncluded';

public const DIGIT_INCLUDED_KEY ‘digitIncluded’ ;

public const PUNCTUATION_INCLUDED_KEY = 'punctuationIncluded';
public const AMBIGUOUS_EXCLUDED_KEY = 'ambiguousExcluded';
public const MIN_UPPER_KEY = 'minUpper"';

public const MIN_LOWER_KEY = 'minLower';

public const MIN_DIGITS_KEY = 'minDigits’;

public const MIN_PUNCTUATION_KEY = 'minPunctuation';

// More keys here ...

"upperIncluded’ ;

private SupperIncluded;
private $lowerIncluded;
private $SdigitIncluded;
private $punctuationIncluded;
private SambiguousExcluded;
private SminUpper;

private SminLower;

private SminDigits;

private SminPunctuation;

// More fields here ...

public __construct(array Soptions = [])

{
// Extract the options from the array.
Sthis->upperIncluded = getDefault(Soptions, UPPER_INCLUDED_KEY, true);
Sthis->lowerIncluded = getDefault(Soptions, LOWER_INCLUDED_KEY, true);
Sthis->digitIncluded = getDefault(Soptions, DIGIT_INCLUDED_KEY, true);
Sthis->punctuationIncluded =

getDefault(Soptions, PUNCTUATION_INCLUDED_KEY, true);

Sthis->ambiguousExcluded = getDefault(Soptions, AMBIGUOUS_EXCLUDED_KEY, true);
// And so on ...
// More initialization code here ...

private function getDefault(array Sarray, string Skey, SdefaultValue)

{
return (isset(Sarray[Skey]) || array_key_exists(Skey, Sarray)) ?
Sarray[Skey] : SdefaultValue;

// More methods here ...

Potentially, we could use this approach to collapse all of our constructor parameters to a single
associative array. Values could be specified (or not) in any order in the array, and the resulting



constructor logic wouldn't be affected. Of all of the “constructor tricks” approaches described, this is

arguably the best.

However, the API (at least the constructor portion) is less self-documenting than ever. We'd have to
write a lot of additional documentation (probably as phpDocumentor comments) to explain how it

works.

Approach 2: Using accessors and mutators (getters and setters)

Rather than write a constructor that’s complicated in its invocation—or in the implementation code
required to make the invocation less complicated—we might instead write a very simple constructor, and
use mutators to set the generator options. As is often the case when we use accessors and mutators, this

gives us a certain level of encapsulation (generally a good thing), at the expense of boilerplate code.

(Note that the example here doesn’t make use of the PHP “magic methods” __set and __get. These
methods can be very useful—though they have serious shortcomings if we have an aim of writing self-

documenting code—but they're outside the scope of this introduction.)



class Generator

{

private SupperIncluded;
private SlowerIncluded;
private $digitIncluded;
private SpunctuationIncluded;
private SambiguousExcluded;
private SminUpper;

private SminLower;

private SminDigits;

private SminPunctuation;

// More fields here ...

public __construct()

{

// General initialization code here ...

public isUpperIncluded(): boolean
{

return Sthis->upperIncluded;

public setUpperIncluded(boolean SupperIncluded)

{
Sthis->upperIncluded = SupperIncluded;

public isLowerIncluded(): boolean

{

return Sthis->lowerIncluded;

public setLowerIncluded(boolean SlowerIncluded)

{

Sthis->lowerIncluded = $lowerIncluded;

// More getters and setters here ...

// More methods here ...

This certainly looks like a good approach. Among other benefits, we could include new configuration
options in the future, without modifying the approach. Further, if we ever decide to load configuration
options from files, there are libraries that will infer property names from a settings file, and automatically
invoke the appropriate mutators. This approach is also much more self-documenting than any of the



10

constructor-oriented options described above.

On the other hand, there’s no guarantee that after some sequence of mutator invocations, the generator is
in a suitable state to begin generating passwords; ensuring that would mean making the mutators much
more aware of the entire state of the generator than we’d normally like them to be. Further, there’s nothing
preventing modifications of a generator instance via a mutator, even after we've begun using it to generate
passwords. To satisfy the requirements that we and the client agreed to, the generator objects should really
be immutable—that is, after instantiation and initialization by a constructor, the object state shouldn’t be
allowed to change. Since the point of a mutator is to change the state of an object, this approach may be a

dead end for us.

Approach 3: Constructing immutable objects with a Builder

Let’s examine a different approach altogether. Instead of one class with a complicated constructor (which
we could use to create an immutable object, at the cost of code that’s difficult to document, maintain, and
use), or one class with simple constructor with mutators for every configuration option (more self-
documenting, but won't produce immutable objects), we'll implement the Builder pattern with 2 classes:

e PasswordGeneratorBuilder

Instances of this class will be mutable objects that aren’t themselves password generators, but rather
builders for password generator objects. This class will have a number of methods for setting the

configuration options, e.g.

o includeUpper(bool $include = true)

o requireUpper(int $min = 1)

o includeLower(bool $include = true)

o requireLower(int $min = 1)

Each of these option-setting methods will be written to support a fluent interface, where the return
value of each method on which the method was invoked, so that as many options can be set as
needed, in a very direct fashion, via method chaining. (The fluent interface for method chaining isn’t an

intrinsic element of the Builder pattern, but it is often employed as part of the pattern.)

Most importantly, PasswordGeneratorBuilder will have a method to create and return a password

generator, with the current set of applied options:
o build()
e PasswordGenerator

This class is the type returned by the build method of PasswordGeneratorBuilder . The API for this

class will be extremely simple, including just 2 public methods:
o generate(int $Slength = 12, $int count = 1)

This method will generate and return passwords.



o builder()

This will be a static method, creating and returning an instance of
PasswordGeneratorBuilder (or of a subclass of that).

To summarize how these classes will be used: the consumer code will invoke PasswordGenerator::builder
to get an instance of PasswordGeneratorBuilder ; then, after setting options via methods of the latter
class, the consumer will use the build method of that class to get a PasswordGenerator , and then use the
generate method of that class to generate passwords.

This usage is illustrated in the following code (condensed from the accompanying generator_demo.php
file).

// Build a generator with the default options.
Sgenerator = PasswordGenerator: :builder()->build();

// Generate a single password with the default length.
echo Sgenerator->generate(), "\n";

// Build a generator with punctuation excluded from the pool.
Sgenerator = PasswordGenerator: :builder()
->includePunctuation(false)
->build();

// Generate a single password of length 16.
echo Sgenerator->generate(16), "\n";

/%
* Build a generator with digits & punctuation excluded, requiring at least 1
* upper- & 1 lower-case letter.
*/
Sgenerator = PasswordGenerator: :builder()
->includeDigit(false)
->includePunctuation(false)
->requireUpper(1)
->requirelLower(1)
->build();

// Generate 10 passwords of 16 characters each.
echo print_r(Sgenerator->generate(16, 10), true), "\n";

At first glance, this usage choreography probably seems convoluted—and in fact, the Builder pattern
doesn’t require that we do things exactly this way. But this aspect of the implementation lets us define both
of these classes as abstract classes, with protected constructors. There will be no way for consumer
code to create an instances of either of these two classes using the new keyword with a constructor; it will
have to use the methods mentioned above—which is exactly what we wanted. Further, since these are both
abstract classes, some of the more specialized aspects of the processing will be performed by overridden
methods in subclasses. Implementing in this fashion should give us a lot of flexibility for further subclassing,

as necessary (e.g. for specialized password generation requirements we haven't anticipated yet).

11


file:///tmp/generator_demo.php

12

Implementation

The accompanying PHP files contain the implementation of the above classes, along with an example script
that demonstrates their use.

e PasswordGenerator.php

Commented source code for the PasswordGeneratorBuilder and PasswordGenerator classes.

e generator_demo.php

Script with 3 usage examples.

Summary

When do we use the Builder pattern?

The Builder pattern is useful in a variety of situations, including (but not limited to) any of the following:

e We need to initialize/configure instances of a class that uses composition extensively—i.e. an instance
of our class is composed of instances of a number of other classes.

e |Initialization of an instance involves several steps performed/invoked by the consumer, and the
instance may not be reliably in a “ready” state in the intermediate points along the way.

e Once an instance of our class is fully initialized, we want it to be immutable—but it may take several
steps to inititalize it, and the details of those steps may vary from instance to instance.

e A class has a number of attributes that affect the critical behaviors of the class in non-

linear/interacting ways.

How do we implement it?

In general, we need at least 2 abstract classes or interfaces—1 for the builder type, and one for the target
object type—and at least 2 concrete classes, extending or implementing the abstract classes or interfaces.
(For compactness in the scenario above, our implementing classes are anonymous classes, but it's more
common to use named classes for this purpose.) We might also include a “director” class, which invokes the
necessary operations on the builder to build an instance of the target class; in many real-world cases, the
consumer’s code performs this role.

In relatively simple cases, we might take advantage of some of the strengths of the Builder pattern without
going to the lengths of defining abstract classes or interfaces—that is, we might simply use 2 concrete
classes: 1 for the builder, and 1 for the target object. In fact, this is essentially how the Builder pattern is


file:///tmp/PasswordGenerator.php
file:///tmp/generator_demo.php

implemented for the Java StringBuilder and String class. Keep in mind, however, that using abstract
classes or interfaces to declare the API of our builder and target types gives us more flexibility for the
future.

The builder class will typically have several methods that configure the components and behavior of the
(eventual) target object. (These methods are good candidates for a fluent interface, where each method
returns the object instance on which the method was invoked, so that we can easily chain multiple
invocations of these methods. As noted previously, however, the Builder pattern does not necessarily imply
a fluent interface.) It will also have at least 1 method that constructs and returns an instance of the target
object type (e.g. our PasswordGeneratorBuilder::build method). In practice, this method (and typically
the entire concrete builder class) will have privileged knowledge of, and access to, the implementation
details of the associated concrete target class. (In part, this is why we used anonymous classes for our
scenario: by including the the concrete subclass of the target class within the builder class, the latter had
privileged access to the former. In PHP, at least as of v7.1, this is the only way to nest the definition of one
class within another.)

For creating a builder instance, we'll usually provide either a constructor in the concrete builder class, or a
static factory method of the abstract target class (e.g. PasswordGenerator: :builder ).

13



	Introduction to the Builder Pattern in PHP
	Background
	Scenario
	Requirements
	Technical Specifications
	Approach 1: Constructor tricks
	Approach 2: Using accessors and mutators (getters and setters)
	Approach 3: Constructing immutable objects with a Builder

	Implementation

	Summary
	When do we use the Builder pattern?
	How do we implement it?



