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Linear Models

Much of the following is a quick review of the relevant sections from the companion document, 
“Mathematical Models & Linear Statistical Models: Basic Concepts & Computations”. If you 
have not read that document, we recommend you do so now.

Definition

One of the simplest statistical models is applicable to a wide range of problems. In the linear 
model, a dependent variable is expressed as a linear combination of independent variables and an
error term:

Y = β 0 + β 1 X 1 + β 2 X 2 + …+ ε, (1)

where

X i  are the independent variables;

Y  is the dependent variable;

β i ∈ ℝ , i=0,1,2,…  (the coefficients are real numbers);

ε  is the error term, a quantity not explained by the model.

 

Formally, the independent variables are assumed to be continuous over real value ranges; in 
practice, this condition is often relaxed to allow for integral or other discrete numeric values. 

Simple Linear Models

In a simple linear model, there's only one independent variable and one dependent variable, so
(1) becomes

Y = β 0 + β 1 X + ε. (2)

This is often written as

Y = α + β X + ε. (3)

As a rule, we don’t know the values of α  and β , but must estimate them. We denote our 
estimates of these two parameters by a and b, respectively; the formula for our estimated line is

Ŷ = a + bX . (4)

In (4), X  represents the actual values of the independent variable, while Ŷ  represents the fitted 
(estimated) values of the dependent variable Y . 

As you've probably figured out already, a simple linear model is easy to show graphically, along 
with the actual data. It's essentially a straight line through the data points, fitting them as closely 
as possible—though we haven't yet said what “as closely as possible” really means.
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Finding the Best Fit via Linear Regression

In linear regression, the values we choose for a and b are those that minimize the sum of squared 
differences between the fitted and actual values of Y . This sum is called the sum of squared 
errors (SSE), and is given by

SSE = ∑
i=1

n

( y i − ŷ)2.
(5)

Using calculus, we find that for a simple linear model, a and b can be computed as

a = ∑ x2∑ y −∑ x∑ x y

n∑ x2 − (∑ x )2

b =
n∑ x y −∑ x∑ y

n∑ x2 − (∑ x)2

(6)

R2: The Coefficient of Determination

When fitting a statistical model (not necessarily linear) to actual data, we often compute the 
coefficient of determination, denoted as R2, as an indicator of how closely the model fits the data.
We compute R2 as 

R2 = SSR
SST

,
(7)

where SSR (sum of squares of regression) and SST (sum of squares, total) are computed as 
follows:

SSR =∑ ( ŷ − ȳ)2 (8)

SST = ∑ ( y − ȳ)2

= ∑ y2 −
(∑ y )2

n

(9)

SST, SSR, and SSE (see (5)) can also be expressed in terms of each other:

SST = SSE + SSR. (10)

The larger that SSR is in relation to SST, the more that the change in the dependent variable is 
explained by the model. More specifically, we can interpret R2 as the fraction of the variation in 
the dependent variable that's determined or explained by the model.
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Implementation of Simple Least-Squares Linear Regression

General Features and Components

To tackle the cricket chirp problem described in “Mathematical Models & Linear Statistical 
Models: Basic Concepts & Computations” (using data in Appendix A, illustrated in Figure 3), 
we'll use the Python programming language. The code that accompanies this document is 
functional but incomplete: it runs as-is, but it doesn’t perform the simple linear least-squares 
regression analysis; for that, we’ll have to add to the code.

An important feature that's already provided in the code, but that we won't be examining, is the 
capability to read a simple table of values from a comma-separated-values (CSV) text file. 

While graphical output isn't strictly necessary for regression analysis, it can be very useful in 
exploratory analysis and in presenting regression results. Thus, the provided Python code uses 
the Matplotlib open source library to display the input data and the regression results [3]. 

Development Tools

The provided Python code requires Python 2.7+ or Python 3.4+ with Matplotlib 2.x, or Python 
3.5+ with Matplotlib 3.x. It can be edited and run with virtually any Python development and 
runtime environment that satisfies these version constraints.

Computational Methods

There are a number of different ways to compute measures and estimates used in descriptive and 
inferential statistics, including those for least-squares regression. For example, the following 
formulas for a and b are mathematically equivalent to (6). 

b = ∑ ( x − x̄ ) ( y − ȳ )

∑ ( x − x̄ )2

a = ȳ − b x̄

(11)

It's easy to think of computers as perfect calculators, but the reality is different—especially when
we put them to the task of numerical analysis with floating-point values:

• Some methods are efficient, but potentially unstable—i.e. in some cases, the calculations 
magnify the inaccuracy inherent in the standard computer representations of most 
floating-point values. 

• Some methods, like (11), are more stable, but less efficient. 

• Still other methods are relatively stable and efficient, but not as easy to understand or 
implement. 

The method for computing a and b used in (6) has potential scale and stability problems; on the 
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other hand, it's easily understood and implemented, and it has generally good performance. For 
that reason, we’ll use this method in the first set of additions to our Python code.

Programming Concepts

Intrinsic data structures

Like virtually all programming languages, Python has certain types of data that are intrinsic—
that is, they're recognized and supported natively by compilers or interpreters of the Python 
language. Some of these types are scalar, holding a single value, and some hold sequences of 
multiple values. The basic Python intrinsic sequence types (which are in fact called sequences) 
include strings of characters (str and unicode), arrays of single bytes (bytearray), and lists 
and tuples, which are sequences of objects. A list is mutable—that is, items can be added to 
and removed from a list—while a tuple is immutable. In Python, a programmer doesn't really 
know or care how the members of a tuple or list are stored in memory, and whether they're 
contiguous or not; the focus tends to be less on scanning across the elements in a step-by-step 
fashion, and more on the high-level operations that are applied to the entire list at once, or to a 
subset satisfying some condition.

Line and statement structure

In Python, a program statement is ended by a line break, unless that line break occurs inside a set
of parentheses or brackets, or the line ends with the continuation character (the backslash). This 
means that care must be taken when breaking a line for readability purposes. (A semicolon may 
also be used to end a Python statement, but this is usually done only when including multiple 
statements on the same line.)

In Python, flow control statements (other than return and break), as well as class and def 
statements (def marks the start of a function or method definition) are called clauses; a clause is 
terminated by a colon, and must be followed by a suite of statements. A suite consists of one or 
more statements that are controlled by the flow control or definition clause that precedes it. If the
suite contains more than one statement, those statements must be indented below the controlling 
clause; a suite with one statement may follow the clause on the same line. If no statements at all 
are wanted in a suite (this often happens when first writing the code for a clause), the pass 
statement is used. 

The rules for indentation of suites result in one of the most distinctive characteristics of Python 
code: rather than simply being a matter of style, indentation is syntactically significant. Further, 
inconsistent indentation (including mixing tab characters and space characters) can produce 
syntax errors that prevent a Python program from running. For programmers who aren't used to 
Python syntax, this can be inconvenient, at least at the start. But there's a benefit to these rules: in
syntactically correct Python code, the visual structure of the code usually matches the logical 
structure quite closely.
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Conditional execution of statements 

Like virtually all programming languages, Python includes statements for testing a condition, 
then following one path of execution if the condition is true, and (optionally) following another 
path if the condition is false. The keyword that introduces these conditional statements in Python 
is if; zero or more elif (else-if) clauses may follow the if clause. After any elif clauses, 
there may be an else clause.

Let's look at a few simple code fragments (Listing 1) showing conditional statements. Notice that
the # character starts a comment that continues until the end of the line. Python also supports a 
special comment format for code documentation (which we’ll see in the code we modify), but 
that's not shown here. Also, note the “lower snake case” convention used for multi-word 
identifiers (variable or function names). Finally, note that do_something(), 
do_something_else(), etc. are simply placeholders for actual functions—they don't actually 
correspond to anything in the example listing, or to built-in functions in either language.

    # Execute a suite if the value of some variable x is less than or equal to
    # the value of another variable y; otherwise, skip over the suite.
    if x <= y:
        do_something()

    # Execute a suite if the value of some variable x is less than or equal to
    # the value of another variable y; otherwise, execute a second suite.
    if x <= y:
        do_something()
    else:
        do_something_else()

    # Execute a suite if the value of some variable x is less than or equal to
    # the value of another variable y; otherwise, execute a second suite if x is
    # x is greater than z; otherwise, execute a third block.
    if x <= y:
        do_something()
    elif x > z:
        do_another_thing()
    else:
        do_something_else()

Listing 1: Conditionals in Python

Explicit and implicit iteration

Python has multiple mechanisms for iterating over a sequence. The for and while statements 
are used for explicit iteration; additionally, there are implicit iteration constructs, such as the map
function and comprehensions, that apply an operation to every item in a sequence, and return a 
new sequence. See Listing 2 for simple examples of both explicit and implicit iteration.
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    # Repeat a suite for each value of i from 0 to len(some_list)—1
    # (inclusive), incrementing i after each iteration.
    for i in range(len(some_list)):
        do_something()

    # Repeat a suite for each element of another_list.
    for j in another_list:
        do_something()

    # Repeat a suite as long as an already declared variable k is less than
    # limit.
    while k < limit:
        do_something()

    # Use list comprehension to construct dest_list based on the elements of 
    # source_list, where each element of dest_list is the square of the 
    # corresponding value from source_list.
    dest_list = [x ** 2 for x in source_list]

    # Use list comprehension to construct dest_list based on a subset of the 
    # elements of source_list: each element of dest_list is the doubled value
    # of the corresponding value from source_list, but only for the positive
    # values in source_list.
    dest_list = [2 * x for x in source_list if x > 0]

Listing 2: Explicit and implicit iteration in Python

References to members of an object

Python supports the definition of classes for object-oriented programming. A class is simply a 
data structure definition, along with definitions of the behaviors associated with that data; an 
object is a variable based on a class definition. Classes often correspond to the types of physical 
or logical real-world objects that are represented in the program. A general introduction to 
object-oriented programming is beyond the scope of this document, so we'll focus just on those 
aspects that are most relevant to our immediate needs.

Note that Python doesn't insist on an object-oriented approach; this often allows for simpler code
in cases where new classes aren't needed—but when an object-oriented approach is employed, 
Python code in class definitions can be a bit unintuitive. In particular, the use of self to refer to 
the current object instance is not optional (as it is in some languages): it is required within 
methods when referring to data and other methods of the object, and self must be the first 
parameter of each method defined in the class.1

1 Python also supports the definition and use of class methods and static methods and data. These are associated 
with the class as a whole, and not with instances of a class; self isn't a parameter for class or static methods.
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Running the Initial Program

Python program (chirps.py)

Using your chosen Python development tools, locate and open the chirps.py and 
simple_linear.py files. The first of these is the main Python script that you'll run to execute 
the linear regression, and the second will perform the mathematical calculations.

Before we make any additions to the code, let's see what it does so far. Begin by running the 
chirps.py script in your Python development environment (or from the command line); you 
should see a window displaying the cricket chirps vs. temperature data (Figure 1).
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Let's examine what's happening at a high level, and follow along with the code itself (Outline 1).

 1. __main__ script [chirps.py]

Main program script, which invokes functions in chirps.py and the other files.

(a) load function [chirps.py]

 i. TableFileParser.__init__ constructor [parser_util.py]

Opens the specified data file, and reads it into memory as a list of lines, where 
each line is a list of data values.

 ii. TableFileParser.floats method [parser_util.py]

Returns the previously read data values as floating-point numbers.

(b) SimpleLinear.__init__ constructor [simple_linear.py]

Copies the provided data to self._x and self._y, and stores the number of data 
points in self._n, in preparation for linear regression.

(c) SimpleLinear.regress method [simple_linear.py]

 i. SimpleLinear._compute_sums method [simple_linear.py]

Currently, this method doesn't do anything (notice the pass statement) Shortly, 
we'll add the code to calculate ∑ x, ∑ y, ∑ x y, ∑ x2, and ∑ y2, and store 
those values in self._sum_x, self._sum_y, self._sum_xy, 
self._sum_x2, and self._sum_y2, respectively. 

 ii. SimpleLinear._estimate_parameters method [simple_linear.py]

We'll add code to this method to use the values computed by 
SimpleLinear._compute_sums to calculate the estimated intercept and slope 
of the regression line, and store those in self._intercept and self._slope 
(respectively).

 iii. SimpleLinear._measure_fit method [simple_linear.py]

Here, we'll add the code to compute SST, the fitted points on the line, and SSE, 
and use those values to calculate R2, then store that value in self._r2.

(d) plot function [chirps.py]

This function invokes methods in the Matplotlib library to render the scatterplot. 
Notice that this function has an if clause: the suite for that clause (which displays 
the regression line and equation) will only be executed if  
model.r2 >= 0 (model is a variable based on the SimpleLinear class). Before 
we add the code for the SimpleLinear._compute_sums, 
SimpleLinear._estimate_parameters, and SimpleLinear._measure_fit
methods, what is the self._r2 value of a SimpleLinear object?

Outline 1: Python program structure
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Implementing Linear Regression

Computing the sums

In computing ∑ x, ∑ y , ∑ x y, ∑ x2, and ∑ y2, the fact that the X and Y values are stored in 
Python sequences (specifically, in tuples) makes our job relatively easy. For one thing, Python 
includes a sum function that computes the sum of a sequence, without us having to write code to 
iterate over the sequence. Another useful function is map, which transforms 1 or more input 
sequences into an output sequence; this is ideal for constructing a sequence containing the 
products of corresponding terms in 2 different sequences, so that we can then use sum on the 
resulting sequence. Finally, for computing the sum of squared items in a sequence, we can use 
either the map function or list comprehension to create a sequence of squared values, and then 
apply the sum function to that.

The code below shows the _compute_sums method of the SimpleLinear class. The code that
we need to keep from the initial version is in gray, normal-weight type; the code we need to add 
is in dark bold type. One line of code that we should delete is shown in strike-through type.

    def _compute_sums(self):
        """Computes intermediate sums for regression."""
        pass  
        self._sum_x = sum(self._x)
        self._sum_y = sum(self._y)
        self._sum_xy = sum(map(lambda x, y: x * y, self._x, self._y))
        self._sum_x2 = sum(x * x for x in self._x)
        self._sum_y2 = sum(y * y for y in self._y)

Listing 3: SimpleLinear._compute_sums method

(Be sure you still have a blank line after the added code, before the _estimate_parameters 
method that follows it. Also, watch out for underscore characters, which can be hard to see.)

The first 2 lines we added are pretty straightforward: in each, we’re simply using the sum 
function to add up all of the items in a sequence. The next line, however, is a little less obvious: 
the map function expects at least 2 arguments: the first is a lambda, or anonymous function, 
which states how the items in the sequences specified in the remaining arguments should be 
transformed to produce new values. In this case, lambda x, y: x * y specifies that there 
will be 2 sequences processed as inputs (based on the number of parameters declared for the 
lambda, between the lambda keyword and the colon character), and that each value in the 
resulting sequence will be produced by multiplying the corresponding values from the input 
sequences together.

The last 2 lines we added use comprehension, in which we specify an expression (e.g. x * x) to 
be applied and evaluated for every item in an existing sequence, to produce a new sequence. This
may sound very similar to the operation of the map function, and it is: In many cases, 
comprehension can be seen as a simplified way of expressing an operation that we might 
otherwise express with the map and/or filter functions.

Finally, note that we’re assigning each of the computed sums to the relevant field of the current 
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SimpleLinear object (self).

Save your changes and run chirps.py again. Fix any syntax errors reported by Python.

Estimating the Regression Parameters

Now that we have the component sums, we can use them to compute a and b. To do this, let’s 
add a few lines of code to the SimpleLinear._estimate_parameters method:

    def _estimate_parameters(self):
        """Computes intercept and slope from sums."""
        pass  
        self._intercept = (
                (self._sum_x2 * self._sum_y - self._sum_x * self._sum_xy)
                / (self._n * self._sum_x2 - self._sum_x * self._sum_x))
        self._slope = (
                (self._n * self._sum_xy - self._sum_x * self._sum_y)
                / (self._n * self._sum_x2 - self._sum_x * self._sum_x))

Listing 4: SimpleLinear._estimate_parameters method

We’re only adding 2 statements this time—but because each is fairly long, and includes several 
terms in its calculations, together they extend over 6 lines. Be careful to keep your parentheses 
balanced (also, notice that Python allows a statement to extend over multiple lines, even without 
a line continuation character, if there’s an open set of parentheses, brackets, or braces).

The expressions for the values computed and assigned to _intercept and _slope are taken 
directly from the expressions for a and b (respectively) in (6).

Once again, you can check for some errors in the code by saving your changes and running 
chirps.py. There won’t be any visible change to the plotted output (since we haven’t yet 
computed R2), but the new code will be parsed and executed, allowing Python to catch syntax 
errors.

Computing Ŷ and R2

Now that we have our regression coefficients, a and b, we can compute the fitted values, Ŷ; from
the latter, we can then compute the coefficient of determination, R2. This will be performed by 
code in the _measure_fit method of of the SimpleLinear class:

    def _measure_fit(self):
        """Computes fitted values and goodness-of-fit statistic(s)."""
        pass  
        sst = self._sum_y2 - self._sum_y * self._sum_y / self._n;
        fitted = [self._intercept + self._slope * x for x in self._x]
        sse = sum(map(lambda y, y_hat: (y - y_hat) ** 2, self._y, fitted))
        self._r2 = 1 - sse / sst

Listing 5: SimpleLinear._measure_fit method

In computing R2, we’re taking advantage of the relationship between SST, SSR, and SSE stated 
in (10). Specifically, we have 
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R2 = SSR
SST

= SST − SSE
SST

= 1 − SSE
SST

,

(12)

Displaying the Output of the Linear Regression Analysis

If we review the code of the plot function in chirps.py, we recall that when R2 is not equal to 
zero, the fitted line is plotted, and the equation of the fitted line (along with the value of R2) is 
added to the plot as a legend. Given that, and assuming our code is written correctly, our program
should now compute and display the linear model fitted (using linear regression) to the chirps & 
temperature data. Save your code changes and execute the chirps.py script once more, and 
you should see something like Figure 2.

Using SciPy for Linear Regression

Given that fitting statistical models (linear or otherwise) to data is a common task in scientific 
computing, decision sciences, etc., we would expect to find this functionality in some 3rd-party 
Python libraries. In fact, SciPy—one of the most widely used Python libraries for scientific and 
engineering applications—includes functions for performing regression analysis.

We can easily replace our regression code with in invocation of the 
scipy.stats.linregress function, with a few changes to the simple_linear.py file.
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Import linregress

First, let’s tell Python that we want to use the linregress function. To do this, add the 
following line near the top of the file. (In general, import statements are found in the first non-
blank, non-comment lines of a Python file.)

from scipy.stats import linregress

Listing 6: Importing scipy.stats.linregress in simple_linear.py

Estimate parameters, compute R2 and fitted values

The linregress function returns the values of a and b, as well as the correlation coefficient 
(which can be squared to get the coefficient of determination)—along with some other values 
that we won’t be using (for now). Essentially, we can replace our _compute_sums, 
_estimate_parameters, and _measure_fit methods with an invocation of linregress, 
plus a couple more lines of code. So we might as well put this code in the 
SimpleLinear.regress method:

    def regress(self):
        """Perform least squares regression on data."""
        self._slope, self._intercept, r, p, std_err = linregress(self._x, self._y)
        self._r2 = r * r
        fitted = [self._intercept + self._slope * x for x in self._x]
        self._compute_sums()  
        self._estimate_parameters()  
        self._measure_fit()  

Listing 7: Invoking linregress in  SimpleLinear.regress method

Remove unused methods

Since we’re no longer invoking the _compute_sums, _estimate_parameters, and 
_measure_fit methods, we should remove them from the SimpleLinear class; however, this is
left as an exercise for you.

Test the SciPy version

Save your changes and run chirps.py. Do you notice any changes? Should we expect any?
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Appendix A: Cricket Chirps vs. Temperature

The following observations were recorded by Dr. Margaret LeMone in Boulder, Colorado, over a
30 day period in August and September, 2007 [2]. The measurements were originally in chirps 
per 30 seconds; the column for chirps per 14 seconds was derived from the original data.

Date Time Chirps/15s Chirps/14s Temp (ºF)

21 Aug 2030 44 41.067 80.5
21 Aug 2100 46.4 43.307 78.5
21 Aug 2200 43.6 40.693 78
24 Aug 1945 35 32.667 73.5
24 Aug 2015 35 32.667 70.5
24 Aug 2100 32.6 30.427 68
24 Aug 2200 28.9 26.973 66
24 Aug 2230 27.7 25.853 65
25 Aug 0030 25.5 23.8 61.5
25 Aug 0330 20.375 19.017 57
25 Aug 0500 12.5 11.667 55
25 Aug 2000 37 34.533 76.25
25 Aug 2030 37.5 35.0 74
25 Aug 2100 36.5 34.067 74
25 Aug 2200 36.2 33.787 72.5
26 Aug 0530 33 30.8 66
26 Aug 2030 43 40.133 77.5
26 Aug 2200 46 42.933 78.5
27 Aug 2000 29 27.067 68.5
27 Aug 2030 31.7 29.587 68.5
27 Aug 2100 31 28.933 68
27 Aug 2200 28.75 26.833 66
28 Aug 0240 23.5 21.933 59
28 Aug 2010 32.4 30.24 70
28 Aug 2050 31 28.933 69
28 Aug 2200 29.5 27.533 67
29 Aug 0240 22.5 21.0 61.25
29 Aug 0440 20.6 19.227 58.5
29 Aug 2000 35 32.667 72
29 Aug 2050 33.1 30.893 71
29 Aug 2200 31.5 29.4 69
29 Aug 2330 28.8 26.88 66.5
30 Aug 0330 21.3 19.88 60
30 Aug 2000 37.8 35.28 75
30 Aug 2055 37 34.533 73.25
30 Aug 2200 37.1 34.627 72.5
1 Sep 2200 36.2 33.787 70
2 Sep 0330 31.4 29.307 67.5
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Date Time Chirps/15s Chirps/14s Temp (ºF)

2 Sep 0600 30.2 28.187 66
4 Sep 0240 31.3 29.213 69
4 Sep 0505 26.1 24.36 63
5 Sep 0500 25.2 23.52 63
6 Sep 0600 23.66 22.083 61
7 Sep 0215 22.25 20.767 62
7 Sep 0525 17.5 16.333 56.5
9 Sep 2010 15.5 14.467 55
9 Sep 2110 14.75 13.767 52

10 Sep 2115 15 14.0 53
10 Sep 2210 14 13.067 50
11 Sep 0315 18.5 17.267 52
16 Sep 2100 27.7 25.853 65
17 Sep 2200 26 24.267 63
18 Sep 0130 21.7 20.253 59
19 Sep 0415 12.5 11.667 50.75
19 Sep 0435 12.5 11.667 49.25
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Figure 3: Cricket Chirps vs. Temperature
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Appendix B: Python Implementation of Simple Linear Regression

All comments and docstrings have been omitted from these code listings, and any occurrence of 
multiple consecutive blank lines has been collapsed into a single line.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

import sys

import matplotlib.pyplot as pyplot
from parser_util import TableFileParser
from simple_linear import SimpleLinear

DEFAULT_DATA_FILE = "chirps.csv"
DEFAULT_DELIMITER = ","
DEFAULT_SKIP_LINES = 1

CHART_TITLE = "Cricket Chirp Rate vs. Temperature"
X_AXIS_TITLE = "Temperature in $^{\circ}$F"
Y_AXIS_TITLE = "Cricket Chirps per 14sec"
MODEL_SPEC = "$\hat{Y} = %8.6f + %8.6fX, \; R^2 = %8.6f$"

def load(args):
    default_params = [DEFAULT_DATA_FILE, DEFAULT_DELIMITER, DEFAULT_SKIP_LINES]
    data_file, delimiter, skip = map(lambda default, actual:
            actual if actual is not None else default,
            default_params, args)[:3]
    observations = TableFileParser(data_file, delimiter, skip).floats()
    x, y = zip(*observations)
    return (x, y)

def plot(model):
    pyplot.title(CHART_TITLE)
    pyplot.xlabel(X_AXIS_TITLE)
    pyplot.ylabel(Y_AXIS_TITLE)
    pyplot.plot(model.x, model.y, marker='o', linestyle='None', color='red')
    if model.r2 >= 0:
        x_bounds = (min(model.x), max(model.x))
        y_fit = [model.intercept + model.slope * x for x in x_bounds]
        fit, = pyplot.plot(x_bounds, y_fit, marker='None', linestyle='-',
                color='blue')
        pyplot.legend([fit],
                [MODEL_SPEC % (model.intercept, model.slope, model.r2)],
                loc='upper left', frameon=False)
    pyplot.show()

if __name__ == "__main__":
    x, y = load((sys.argv + [None] * 3)[1:4])
    model = SimpleLinear(x, y)
    model.regress()
    plot(model)

Listing 8: chirps.py
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

class SimpleLinear(object):

    def __init__(self, x, y):
        self._n = len(x)
        self._x = tuple(x)
        self._y = tuple(y)
        self._intercept = 0
        self._slope = 0
        self._r2 = -1

    def regress(self):
        self._compute_sums()
        self._estimate_parameters()
        self._measure_fit()

    @property
    def n(self):
        return self._n

    @property
    def x(self):
        return self._x

    @property
    def y(self):
        return self._y

    @property
    def intercept(self):
        return self._intercept

    @property
    def slope(self):
        return self._slope

    @property
    def r2(self):
        return self._r2

    def _compute_sums(self):
        self._sum_x = sum(self._x)
        self._sum_y = sum(self._y)
        self._sum_xy = sum(map(lambda x, y: x * y, self._x, self._y))
        self._sum_x2 = sum(x * x for x in self._x)
        self._sum_y2 = sum(y * y for y in self._y)

    def _estimate_parameters(self):
        self._intercept = (
                (self._sum_x2 * self._sum_y - self._sum_x * self._sum_xy)
                / (self._n * self._sum_x2 - self._sum_x * self._sum_x))
        self._slope = (
                (self._n * self._sum_xy - self._sum_x * self._sum_y)
                / (self._n * self._sum_x2 - self._sum_x * self._sum_x))

    def _measure_fit(self):
        fitted = [self._intercept + self._slope * x for x in self._x]
        sst = self._sum_y2 - self._sum_y * self._sum_y / self._n;
        sse = sum(map(lambda y, y_hat: (y - y_hat) ** 2, self._y, fitted))
        self._r2 = 1 - sse / sst

Listing 9: simple_linear.py
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

from scipy.stats import linregress

class SimpleLinear(object):

    def __init__(self, x, y):
        self._n = len(x)
        self._x = tuple(x)
        self._y = tuple(y)
        self._intercept = 0
        self._slope = 0
        self._r2 = -1

    def regress(self):
        self._slope, self._intercept, r, p, std_err = linregress(
                self._x, self._y)
        self._r2 = r * r
        fitted = [self._intercept + self._slope * x for x in self._x]

    @property
    def n(self):
        return self._n

    @property
    def x(self):
        return self._x

    @property
    def y(self):
        return self._y

    @property
    def intercept(self):
        return self._intercept

    @property
    def slope(self):
        return self._slope

    @property
    def r2(self):
        return self._r2

Listing 10: simple_linear.py (using SciPy)
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

class TableFileParser(object):

    def __init__(self, file_name, delimiter, skip=0):
        specified file and parsing them into a list of string lists."""
        with open(file_name) as file:
            table = [line.strip().split(delimiter) for line in file
                if 0 != len(line.strip())]
            self._table = table[skip:]

    def strings(self):
        return [row[:] for row in self._table]

    def ints(self):
        return [[int(col) for col in row] for row in self._table]

    def floats(self):
        return [[float(col) for col in row] for row in self._table]

Listing 11: parser_util.py
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