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Things Change

(Adapted with permission from “Things Change” by the Maryland Collaborative for Teacher 
Preparation [1].)

Introduction

The only thing certain in life is change. From birth we each grow taller, heavier (and sometimes 
lighter), older, wiser, richer (and sometimes poorer). We live in human communities with 
populations that are changing minute by minute through births and deaths and immigration, and 
at any instant of time many of those people are in motion on foot, bicycles, cars, buses, trains, 
and airplanes. The physical features of the world around us are in constant motion—pushed by 
forces of wind and water and gravity—and our planet Earth is racing around the sun at nearly 
1,700,000 miles per day. In our economic lives the prices we pay for food, clothes, shelter, 
transportation, education, and entertainment go up and down in response to consumer demand 
and producer supply.

Many of the most important problems in mathematics beyond arithmetics require description and
prediction of changes in related quantitative variables—in other words, construction and use of 
models of change. In some cases those problems involve analysis of changes in variables as time 
passes; in other cases the problem is to understand the ways that changes in some variables cause
changes in other variables. Algebra and calculus are at the heart of this study of change.

Patterns of Change

When we have information about a relationship between two or more variables, one of the best 
ways to present that information is with coordinate graphs of ( x , y ) data pairs. Such graphs may 
display specific pairs of related numerical values, a line or curve representing the general 
relationship between the x and y values, or both.

The following statements describe nine different situations in which two variables are (or at least 
seem to be) related to each other. Match each situation to the graph that you believe is most 
likely to represent the relation between those variables. Then explain as carefully as you can 
what the shape of the graph tells about the ways the variables change in relation to each other.

1. When a tennis player hits a high lob shot, its height changes as time passes. What pattern 
seems likely to relate time and height?

2. The senior class officers at Lincoln High School decided to order and sell souvenir 
baseball caps with the school insignia, name, and "Class of '95" on them. One supplier 
said it would charge $100 to make the design and then an additional $4 for each cap 
made. How would the total cost of the order be related to the number of caps in the 
order?

3. The population of the world has been increasing for as long as data or estimates have 
been available. What pattern of population growth has occurred over that time?
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4. In planning a bus trip to Florida for spring break, a travel agent worked on the 
assumption that each bus would hold at most 40 students. How would the number of 
buses be related to the number of student customers?

5. The depth of water under the U. S. Constellation in Baltimore Harbor changes due to 
tides as time passes in a day. What pattern would that (time, depth) data fit?

6. When the Lincoln High School class officers decided to order and sell t-shirts with names
of everyone in the Class of `95, they checked with a sample of students to see how many 
would buy at various proposed prices. How would sales be related to price charged?

7. How does the height of a bungee jumper vary as time passes in the jump?

8. In a wildlife experiment, all fish were removed from a lake and the lake was restocked 
with 1000 new fish. The population of fish then increased over the years as time passed. 
What pattern would likely describe change in fish population over time?

9. According to The Old Farmer's Almanac, if you live near crickets, you can estimate the 
nighttime outdoor temperature in degrees Fahrenheit by counting the number of cricket 
chirps in 14 seconds and adding 40 to that number. If you tested that by gathering data 
and plotting chirps vs. temperature, and the data seemed to support the rule of thumb, 
what might the graph of observations look like?

For each of the scenarios above, select the graph from the following page that you think most 
closely matches the pattern or relationship described. Try not to focus on the units or scales used 
on the axes of each graph (in fact, none of the graphs have such notations), but on the general 
nature of the relationships between the quantities described.
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Mathematical Models

Introduction

When the relationships between the quantities of a real-world problem can be expressed in 
mathematical formulas, we refer to those formulas—along with the “key” that maps the variables
and constants in the formulas to real-world quantities and units of measure—as a mathematical 
model of the problem.

Example

While exiting the Lunar Module, Apollo 14 mission commander Alan Shepard rolls a golf ball 
off the platform at the top of the ladder.1 The golf ball leaves the platform moving horizontally 
and falls to the Moon's surface from a height of 3 meters. The Moon's gravitational acceleration 
close to the surface is 1.63 meters per second per second. (In other words, after 1 second, a body 
will be falling at 1.63 meters per second; after 2 seconds, it will be falling at 3.26 meters per 
second; and so on.) Since the Moon's atmosphere is so thin, we can ignore atmospheric drag.

If we want to know how the height above the surface of the golf ball at some time t after it leaves
the platform, up to the moment it hits the ground, we can start with the general formulas for a 
body falling in a vacuum, and adapt them to our problem.

Given

g = gravitational acceleration
t = time

v0 = initial vertical speed

h0 = initial height

v t = vertical speed at time t

h t = height at time t

(1)

Then

v t = v0 + g t

h t = h0 + v0 t + g
2

t 2 (2)

For our scenario,

g = −1.63  meters/sec2

v0 = 0  meters/sec

h0 = 3  meters

(3)

1 In reality, while Alan Shepard famously used a makeshift golf club to hit two golf balls on the Moon, he didn't 
roll any golf balls off the LM platform, as far as we know.
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Taken together, (1), (2), and (3) make up a mathematical model that can be used to answer a 
number of questions about our hypothetical golf ball. We can even set h t=0 and use the 
quadratic formula to solve the second equation of (2) for t, to find out how long it will take the 
ball to reach the ground.

Mathematical Formulas as Patterns of Change

By itself, (2) might not be a very useful model, since without (1) it might not be clear what the 
different variables refer to, and since it doesn't include the information in (3) that's specific to our
scenario. But general formulas like those in (2) are the essential core of a mathematical model: 
just as a graph visually conveys the relationship between variables, a formula does the same 
thing symbolically. 

See if you can match the equations shown below to the corresponding scenarios or graphs in 
“Patterns of Change”. While none of the formulas is a complete model, some are tied very 
specifically to the corresponding scenarios. Others fit the scenarios to some degree (at least in the
general shape), but might not express the underlying mathematics accurately. Some are written in
a general form, where c0 , c1 , etc. represent constant values in the equations.

This is intended to be a challenging exercise, especially when it comes to the last few formulas. 
Don't worry if you don't understand all of the symbols and notation used2; see if you can guess 
their meaning from their appearance and use. If you can't match all of the formulas to scenarios 
or graphs, keep in mind that it's possible that some of the formulas don't correspond to any of the
scenarios or graphs, and vice versa. On the other hand, it's also possible that one (or more) of the 
general formulas matches more than one scenario, or that more than one formula can be matched
with a single scenario.

i. y = 4 x + 100

ii. y =−16 (x − 2)2 + 70

iii. y = ⌈ x
40 ⌉

iv. y = x − 40 + ε

v. y = c0 + c1 x

vi. y = c0 + c1 sin x

vii. y = c0 + c1
cos x
x + 1

viii. y =
c0

1 + ec1−x

ix. y = c0 e
c1 (x+ c 2)

2 A review of some of the symbols and their usage is found in Appendix B.
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Statistical Models

Introduction

The final “Patterns of Change” scenario (page 4) mentions a relationship claimed to exist 
between temperature and the rate of cricket chirps. Of course, even if such a relationship exists, 
there could be many other factors besides temperature that affect the rate of crickets' chirps; 
because of this, creating a formal model for this scenario presents a challenge: Even if we 
analyze the data very carefully, and quantity all the factors we can, we won't be able to predict 
the outcome entirely; some portion will remain unpredictable. This unpredictable part might be 
due to known factors that are beyond our practical ability to measure or control them, or it might 
be due to factors we're not even aware of. Whatever the reason, when we build mathematical 
models that acknowledge or include some randomness, uncertainty, or unpredictability in the 
dependent (output) variables, given known independent (input) variable values, we call them 
statistical models.

Statistical Inference

Statistical models are usually constructed by inference. There's not a formal definition of the 
statistical inference process, but we can think of it generally as:

1. Collect, explore, and analyze data.

2. Quantify relationships in the data.

3. Test the model elements—i.e. the relationships quantified in step 2.

4. If the relationships aren't sufficiently supported by the test results, use those results to 
revise assumptions and search for other relationships.

5. Repeat steps 1–4 as appropriate.

This might sound a bit like what you've learned as the scientific method. In fact, statistical 
inference is often an important part of scientific inquiry.

Value of Statistical Models

Can a statistical model still be useful, or does the inherent uncertainty make such a model too 
inaccurate? That's not an easy question to answer. In part, it depends on how well the model fits 
the data. So we not only need to quantify the relationships—we also need to quantify how well 
we can quantify those relationships!

Ultimately, however, the answer boils down to our needs. A model that leaves a majority of the 
variation in the dependent variable unexplained may be sufficient for some purposes, while other
uses may require a model that explains almost all of that variation.
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Types of Statistical Models

Just as the set of even the most commonly used types of mathematical models is far too broad to 
show in “Patterns of Change”,  there's a wide variety of commonly used statistical model types, 
and we can only hope to touch on a few here. For example, in a polynomial model, the dependent
variable is expressed as a polynomial function of one or more independent variables (a simple 
form of the polynomial model is the linear model, where there are no terms with degree higher 
than 1); in a cyclical time series model, the dependent variable cycles in value over time (the 
independent variable), either in a relatively smooth sinusoidal (sine wave-shaped) fashion, or as 
the sum of multiple sinusoidal cycles of different lengths; in an autoregressive time series model,
the value of the dependent variable at one moment in time is used as an input value at a later 
moment, following a lag period. (Of course, there are also hybrid models that use combinations 
of these and other types.)

Discussion

1. Besides the cricket chirps scenario, which of the “Patterns of Change” scenarios (if any) 
could be described by statistical models?

2. Assume that we're developing statistical models for each of the following groups of 
variables. What are the independent and dependent variables in each? What type (or 
combination of types) of statistical model, from those mentioned briefly above, might 
best fit real data in each case? 

a) Daily low temperature in Socorro, New Mexico vs. day of the year.

b) Populations of rabbits in the wild in New Mexico, measured or estimated monthly, 
based on the previous month's rabbit and coyote populations.

c) Total monthly precipitation, measured at Denver International Airport, vs. month of 
the year.

d) Annual number of hurricanes in the Atlantic ocean over the past 75 years.

e) End-of-day value of the Dow Jones Industrial Average (a set of representative stocks 
listed on the New York Stock Exchange) over the past 50 years, taking into account 
long-term trends, seasonal variations throughout the year, and the fact that the ending 
value on one day strongly influences the early prices for those stocks in the following 
day.
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Linear Models

Definition

One of the simplest statistical models is applicable to a wide range of problems. In the linear 
model, a dependent variable is expressed as a linear combination of independent variables and an
error term:3

Y = β 0 + β 1 X 1 + β 2 X 2 + …+ ε, (4)

where

X i  are the independent variables;

Y  is the dependent variable;

β i ∈ ℝ , i=0,1,2,…  (the coefficients are real numbers);

ε  is the error term, a quantity not explained by the model.

 

Formally, the independent variables are assumed to be continuous over real value ranges; in 
practice, this condition is often relaxed to allow for integral or other discrete numeric values. 

Simple Linear Models

In a simple linear model, there's only one independent variable and one dependent variable, so
(4) becomes

Y = β 0 + β 1 X + ε. (5)

This is often written as

Y = α + β X + ε. (6)

As you've probably figured out already, a simple linear model is easy to show graphically, along 
with the actual data. It's essentially a straight line through the data points, fitting them as closely 
as possible—though we haven't yet said what “as closely as possible” really means.

Finding the Best Fit

How do we find the straight line that best fits the data? To illustrate the problem, let's look at 
actual data for cricket chirps and temperature, collected by Dr. Peggy LeMone [3]. We'll begin 
by expanding graph F (page 5), adding some details on the scale and units of measure (Figure 1, 
data from Appendix A).

3 In this usage, linear model is synonymous with linear regression model. In other contexts, the same term can 
refer to other model types—e.g. the general linear model, which allows for multiple dependent variables, linear 
combinations of functions (possibly non-linear) of the independent variables, and categorical values.
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Arguably, the most important question to ask at this point is whether a linear model makes sense 
for the relationship between temperature and cricket chirp rate. Even if the answer is yes, we 
shouldn't assume that any apparent relationship will hold under conditions far outside the bounds
of the observed data. For instance, it seems quite likely that very high or very low temperatures 
would have a disastrous effect on the crickets themselves—and consequently on their chirps.

A linear model seems appropriate in this case, for the range of temperatures observed. But two 
different people, fitting a straight line to the data by sight, will probably draw slightly different 
lines. How can we measure how well each line fits, so that we can select the best fitting one?

It might seem reasonable to evaluate the fit by adding up the differences (called residuals or 
errors) between the Y values on the line (denoted by ŷ i) and the actual Y values for each line 
under consideration, and use the line with the sum closest to zero. However, for any non-vertical 
straight line that passes through ( x̄ , ȳ ), the positive and negative residuals cancel each other out, 
and the sum is zero. (For a proof of this, see Appendix D.)
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Linear Least-Squares Regression

If we want to use the residuals to assess the quality of fit, we need to sum them in such a way 
that the negative values don’t cancel out the positive values. One general approach is to treat all 
of the residuals as positive values in some way; for example, we could use the absolute values or 
the squared values of the residuals. Both approaches are used, but taking the squared values 
makes an analytical solution easier. The method of finding the best fitting line by minimizing the 
sum of the squared residuals is called linear (or ordinary) least-squares regression.4

If we denote our  model estimates for α  and β  by a and b, respectively,5 and the fitted line by

Ŷ = a + bX , (7)

then the sum of the squared residuals (sum of squared errors, or SSE) for the model is given by

SSE = ∑
i=1

n

( y i − ŷ)2.
(8)

We could calculate SSE for multiple lines, and choose the line with the lowest value as the best 
fit among them. However, instead of comparing specific alternatives lines, we can use calculus to
find the values of a and b that give the smallest possible SSE. Even better, we can derive general 
formulas for a and b that can be used with any appropriate data set. This is the aim of least-
squares regression. The steps of the analysis can be found in Appendix D, but we’ll summarize 
the results here, so that we can make use of them: 

The values of a and b in (7) that give the minimum value of SSE in (8) can be computed as 

a = ∑ x2∑ y −∑ x∑ x y

n∑ x2 − (∑ x )2

b =
n∑ x y −∑ x∑ y

n∑ x2 − (∑ x)2

(9)

4 The linear least-squares method is most useful when the residuals aren't correlated with each other or with the 
independent variable, and when they follow a normal distribution. However, even when these conditions are not 
strictly satisfied, this method is still often used, at least as an exploratory tool.

5 The fact that b is typically used for the estimated slope in the linear regression model can cause some confusion, 
since the standard slope-intercept form of the equation of a line is y = mx + b, where b is the intercept.
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A Simple Example

Let's use (9) to find a and b for a simple data set. Given the x and y values provided in Table 1, 
we begin by calculating and filling in the values in the xy and x2 columns. Then, we sum the 
values in each column, and write the totals in the bottom row.

x y xy x2

0 -0.5 0 0
1 0 0 1
2 1.5 3 4
3 2 6 9

∑ x = 6 ∑ y = 3 ∑ x y = 9 ∑ x2 = 14

Table 1: Data and calculations for simple regression example

Finally, we can substitute the values from the bottom row of Table 1, along with the number of 
data points (n = 4), in place of the corresponding sums in (9).

a = ∑ x2∑ y −∑ x∑ x y

n∑ x2 − (∑ x )2

= 14⋅3 − 6⋅9
4⋅14 − 62 =−12

20
=−3

5

b =
n∑ x y −∑ x∑ y

n∑ x2 − (∑ x)2

= 4⋅9 − 6⋅3
4⋅14 − 62 = 18

20
= 9

10

We now have our fitted line, found by linear least-squares regression.

Ŷ =−3
5

+ 9
10

X (10)

To visualize the fit, we can plot the data points along with the fitted regression line (Figure 2). 
It's easy to see that the fit is pretty good—and because we used least-squares regression, we 
know that this fitted line minimizes SSE. But we're still not sure how to quantify how good the 
fit is.
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The Coefficient of Determination

To assess the quality of a model, or to compare alternative models, we usually need some way to 
quantify how well a model fits the data—to measure its goodness-of-fit. (This isn't the only type 
of measure of interest when evaluating a statistical model, but it's one of the most important.)

One way to measure goodness-of-fit is to measure how much of the change in the dependent 
variable is accounted for by the model. First, we need to quantify the total variation in the 
dependent variable; we can do this by summing the squared deviations of its observed values 
from its sample mean. We call this the total sum of squares, or SST.

SST = ∑ ( y − ȳ)2

= ∑ y2 −
(∑ y )2

n

(11)

SST can also be expressed as the sum of SSE and the sum of squares of regression (SSR).6

SST = SSE + SSR, (12)

where SSE is given by (8), and

6 Unfortunately, while these abbreviations are used in many textbooks, some others define SSE and SSR with 
meanings opposite to these. In those texts, SSR is the sum of squared residuals (which we're calling the sum of 
squared errors), while SSE is the sum of squares explained (i.e. the regression sum of squares). Adding more 
confusion, still other texts use ESS for explained sum of squares, RSS for residual sum of squares, and TSS for 
total sum of squares. The best way to avoid confusion is to define these terms explicitly when using them.
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SSR =∑ ( ŷ − ȳ)2. (13)

The larger that SSR is in relation to SST, the more that the change in the dependent variable is 
explained by the model. This leads us to a useful goodness-of-fit measure: the coefficient of 
determination, or R2.

R2 = SSR
SST (14)

We can interpret R2 as the fraction of the variation in the dependent variable that's determined or 
explained by the model.7 

Simple Example Revisited: Computing the Coefficient of Determination

Let's calculate R2 for the simple data set in Table 1. To begin, let's add a few more columns to the
table, for y2, ŷ, and ( y − ŷ )2. Fill in those columns using the original data and the fitted line 

equation given by (10); then, compute the sums for y2 and ( y − ŷ )2 (Table 2).

x y xy x2 y2 ŷ ( y − ŷ )2

0 -0.5 0 0 0.25 -0.6 0.01
1 0 0 1 0 0.3 0.09
2 1.5 3 4 2.25 1.2 0.09
3 2 6 9 4 2.1 0.01

∑ x = 6 ∑ y = 3 ∑ x y = 9 ∑ x2 = 14 ∑ y2 = 6.5 ∑ ( y − ŷ)2 =0.2

Table 2: Calculations for coefficient of determination in simple regression example

Finally, we can use (8), (11), (12), and (14) to find R2.

SSE = ∑ ( y − ŷ )2

= 0.2

SST = ∑ y
2 −

(∑ y )2

n

= 6.5 − 32

4
= 4.25

SSR = SST − SSE

= 4.25 − 0.2 = 4.05

7 While R2 is useful, it's often misused. It's easy to fall into the trap of adding more independent variables or 
polynomial terms to a model to increase R2, at the expense of a loss of general predictive power. For this reason, 
an adjusted R2, which discounts the increase from additional terms, is often used when building multivariate or 
polynomial models.
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R2 = SSR
SST

= 4.05
4.25

≈ 0.95

From this, we conclude that approximately 95% of the total change in the dependent variable is 
determined or explained by the independent variable.

Discussion

1. Are there any other curves besides a straight line that fit the data in Table 1? 

2. Should we consider an R2 value of 0.95 to be high enough for a usable model?

3. Do you think a non-linear model could have a higher R2 value in this case?

4. What other factors, besides a difference in R2, might lead us to prefer a linear model over 
a non-linear model, or vice versa?

What about the crickets?

Even though the cricket data set isn’t very large, we probably wouldn’t want to do the chirps vs. 
temperature linear regression by hand. However, these calculations can be performed easily in a 
spreadsheet program; in fact, virtually all of the most widely used spreadsheet programs—
including Microsoft Excel, Google Sheets, LibreOffice Calc, OpenOffice Calc, and Apple 
Numbers—include functions specifically for computing a , b , and Ŷ  in (7), from X and Y input 
values. If you have access to one of these programs, we suggest you attempt this analysis, using 
the data in Appendix A.

In the accompanying document, “Linear Statistical Models: Basic Computation with Python and 
SciPy”, we’ll use the Python programming language to analyze the cricket chirps data—first 
writing code to compute a , b , Ŷ , and R2 according to formulas (9) and (14), then using the 
SciPy library to perform the equivalent analysis.
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Appendix A: Cricket Chirps vs. Temperature

The following observations were recorded by Dr. Margaret LeMone in Boulder, Colorado, over a
30 day period in August and September, 2007 [3]. According to Dr. LeMone, the measurements 
were originally in chirps per 30 seconds (averaged over multiple successive observations, and 
halved for chirps per 15 seconds) and degrees Fahrenheit (taking the average reading from 
multiple thermometers); the column for chirps per 14 seconds was derived from the original data.

Date Time Chirps/15s Chirps/14s Temp (ºF)

21 Aug 2030 44 41.067 80.5
21 Aug 2100 46.4 43.307 78.5
21 Aug 2200 43.6 40.693 78
24 Aug 1945 35 32.667 73.5
24 Aug 2015 35 32.667 70.5
24 Aug 2100 32.6 30.427 68
24 Aug 2200 28.9 26.973 66
24 Aug 2230 27.7 25.853 65
25 Aug 0030 25.5 23.8 61.5
25 Aug 0330 20.375 19.017 57
25 Aug 0500 12.5 11.667 55
25 Aug 2000 37 34.533 76.25
25 Aug 2030 37.5 35.0 74
25 Aug 2100 36.5 34.067 74
25 Aug 2200 36.2 33.787 72.5
26 Aug 0530 33 30.8 66
26 Aug 2030 43 40.133 77.5
26 Aug 2200 46 42.933 78.5
27 Aug 2000 29 27.067 68.5
27 Aug 2030 31.7 29.587 68.5
27 Aug 2100 31 28.933 68
27 Aug 2200 28.75 26.833 66
28 Aug 0240 23.5 21.933 59
28 Aug 2010 32.4 30.24 70
28 Aug 2050 31 28.933 69
28 Aug 2200 29.5 27.533 67
29 Aug 0240 22.5 21.0 61.25
29 Aug 0440 20.6 19.227 58.5
29 Aug 2000 35 32.667 72
29 Aug 2050 33.1 30.893 71
29 Aug 2200 31.5 29.4 69
29 Aug 2330 28.8 26.88 66.5
30 Aug 0330 21.3 19.88 60
30 Aug 2000 37.8 35.28 75
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Date Time Chirps/15s Chirps/14s Temp (ºF)

30 Aug 2055 37 34.533 73.25
30 Aug 2200 37.1 34.627 72.5
1 Sep 2200 36.2 33.787 70
2 Sep 0330 31.4 29.307 67.5
2 Sep 0600 30.2 28.187 66
4 Sep 0240 31.3 29.213 69
4 Sep 0505 26.1 24.36 63
5 Sep 0500 25.2 23.52 63
6 Sep 0600 23.66 22.083 61
7 Sep 0215 22.25 20.767 62
7 Sep 0525 17.5 16.333 56.5
9 Sep 2010 15.5 14.467 55
9 Sep 2110 14.75 13.767 52
10 Sep 2115 15 14.0 53
10 Sep 2210 14 13.067 50
11 Sep 0315 18.5 17.267 52
16 Sep 2100 27.7 25.853 65
17 Sep 2200 26 24.267 63
18 Sep 0130 21.7 20.253 59
19 Sep 0415 12.5 11.667 50.75
19 Sep 0435 12.5 11.667 49.25
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Appendix B: Mathematical symbols and usage

Most of the mathematical symbols (beyond +,−,⋅, / ,=, etc.) used in the body of this document 
are defined informally below—along with some others that are closely related to them.

Concept Symbol Definition Examples

Floor ⌊…⌋
Rounding down (towards −∞) 
of a non-integral real number, 
to the next integer value.

⌊1.75⌋ = 1
⌊−1.75⌋ = −2

⌊1⌋ = 1

Ceiling ⌈…⌉
Rounding up (towards ∞) of a 
non-integral real number, to the 
next integer value.

⌈1.75⌉ = 2
⌈−1.75⌉ = −1

⌈1⌉ = 1

Exponent bn (superscript)
Number of times (not necessary
integral) a base b is multiplied 
by itself in a product.

x2 = x⋅x
34 = 3⋅3⋅3⋅3 = 81

Enumeration
si

(subscript)
Numbered terms of an ordered 
sequence.

S = {s1 , s2 , s3 ,…}
F = {1 , 1 , 2 , 3 , 5 ,…}

(F  is Fibonacci sequence.)

Sum ∑

Sum of terms in a sequence.

∑
i=m

n

si = sm + sm+1 + … + sn

(If the bounds m and n are well 
understood, they are often 
omitted from the∑ operator 
notation.)

∑
i=1

4

f i = f 1 + f 2 + f 3 + f 4

= 1 + 1 + 2 + 3
(Sum of 1st  4 terms of
Fibonacci sequence.)

Product ∏
Product of terms in a sequence.

∏
i=m

n

si = sm⋅sm+1⋅…⋅sn

∏
i=3

5
i
i+1

= 3
4

⋅4
5

⋅5
6

= 1
2

Factorial n!
n! = ∏

i=1

n

i

= 1⋅2⋅…⋅n
0! = 1

5! = 1⋅2⋅3⋅4⋅5
= 120

Euler’s 
number

e

Base of natural logarithms.

e = ∑
i=0

∞ 1
n!

= 1
0!

+ 1
1!

+ 1
2!

+ 1
3!

+ …

≈ 2.71828…

Mathematical Models & Linear Statistical Models: Basic Concepts & Computations 23





Appendix C: Proof that the Sum of Residuals is Zero

For any straight line that passes through the point ( x̄ , ȳ ), the sum of errors (residuals) is zero. We
can prove this using ŷ = ȳ + m ( x − x̄ ) as a general equation for any such line.

Given

x̄ =
∑
i=1

n

x i

n

ȳ =
∑
i=1

n

yi

n

ŷ = ȳ + m ( x − x̄ )

Then

SE = sum of errors (residuals)

= ∑
i=1

n

( y i − ŷi )

= ∑
i=1

n

[ yi − ȳ − m (x i − x̄ )]

= ∑
i=1

n

( y i − ȳ ) − m∑
i=1

n

( xi − x̄ )

= ∑
i=1

n

yi −∑
i=1

n

ȳ − m( ∑
i=1

n

x i −∑
i=1

n

x̄)

= n ȳ − n ȳ − m ( n x̄ − n x̄ )
= 0
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Appendix D: Minimizing the sum of squared errors (SSE)

(Note: The analysis below uses basic calculus.)

We know that if a differentiable function of a single variable (where the domain of that variable 
is unbounded) has a finite minimum or maximum value, it occurs at a stationary point—i.e. a 
point where the first derivative of the function is equal to zero. For example, the minimum y 
value of an upward-opening parabola occurs at its vertex, where the slope is zero. 

The same rule applies to differentiable functions of N variables, as well: if a finite minimum or 
maximum value of the function exists, it must be located at a point where all N of the partial 
derivatives of the function are equal to zero.8 Therefore, to find a and b that give the minimum 
value of SSE, we need to find the combination where the partial derivatives of SSE with respect 
to a and b are equal to zero.9 The first step is thus to compute these partial derivatives.

∂ (SSE )
∂a

= ∑
i=1

n

[ −2 ( y i − a − b x i )]

= −2(∑i=1

n

y i − a n − b∑
i=1

n

x i)
∂ (SSE )

∂ b
= ∑

i=1

n

[ −2 xi ( y i − a − b x i) ]

= −2(∑
i=1

n

x i y i − a∑
i=1

n

x i − b∑
i=1

n

x i
2)

(15)

By setting the value of both partial derivatives in (15) to 0, we get 2 equations in 2 unknowns. 
(The x and y values aren't unknowns in this case; they're assumed to come from actual data.) 
Since all of our summations are over the same range, we'll leave out the limits and indices from 
here on.

0 = −2(∑ y − a n − b∑ x )
0 = −2(∑ x y − a∑ x − b∑ x2)

a n + b∑ x = ∑ y

a∑ x + b∑ x2 = ∑ x y
(16)

8 In a function of two or more variables, the partial derivative of the function with respect to one of the variables is
obtained by taking the derivative with respect to that variable, while treating all other variables as constants.

9 Just as we can use the second derivative of a function of a single variable to determine whether a stationary point
is a minimum, maximum, or inflection point, we can use the matrix of second partial derivatives (called the 
Hessian matrix) to do this with a function of multiple variables. Though it's outside the scope of this document, it
can be shown from its Hessian that the sole stationary point of SSE is in fact a minimum, for any data set with at 
least two distinct values of the independent variable.
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We can now solve the equations in (16) simultaneously to find a and b.

a n∑ x 2 + b∑ x∑ x2 = ∑ x2∑ y

a (∑ x )2 + b∑ x∑ x2 = ∑ x∑ x y

a [n∑ x2 − (∑ x)2] = ∑ x2 y −∑ x∑ x y

a n∑ x + b (∑ x)2
= ∑ x∑ y

a n∑ x + b n∑ x2 = n∑ x y

b [n∑ x2 − (∑ x )2] = n∑ x y −∑ x∑ y

a = ∑ x2∑ y −∑ x∑ x y

n∑ x2 − (∑ x )2

b =
n∑ x y −∑ x∑ y

n∑ x2 − (∑ x)2

(17)
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