Selected Symbols for Basic Mathematical/Statistical Modeling

These are the key mathematical symbols (other than $+, -, \cdot, /, =$, etc.) used in "Mathematical Models & Linear Statistical Models: Basic Concepts & Computations".

Concept	Symbol	Definition	Examples
Floor	[]	Rounding down (towards $-\infty$) of a non-integral real number, to the next integer value.	$\begin{bmatrix} 1.75 \end{bmatrix} = 1 \\ \begin{bmatrix} -1.75 \end{bmatrix} = -2 \\ \begin{bmatrix} 1 \end{bmatrix} = 1 \end{bmatrix}$
Ceiling	[]	Rounding up (towards ∞) of a non-integral real number, to the next integer value.	$ \begin{bmatrix} 1.75 \\ = 2 \\ [-1.75] = -1 \\ [1] = 1 \end{bmatrix} $
Exponent	<i>bⁿ</i> (superscript)	Number of times (not necessary integral) a base b is multiplied by itself in a product.	$x^{2} = x \cdot x$ $3^{4} = 3 \cdot 3 \cdot 3 \cdot 3 = 81$
Enumeration	s _i (subscript)	Numbered terms of an ordered sequence.	$S = \{s_1, s_2, s_3,\}$ $F = \{1, 1, 2, 3, 5,\}$ (<i>F</i> is Fibonacci sequence.)
Sum	Σ	Sum of terms in a sequence. $\sum_{i=m}^{n} s_i = s_m + s_{m+1} + \dots + s_n$ (If the bounds <i>m</i> and <i>n</i> are well understood, they are often omitted from the \sum operator notation.)	$\sum_{i=1}^{4} f_i = f_1 + f_2 + f_3 + f_4$ = 1 + 1 + 2 + 3 (Sum of 1 st 4 terms of Fibonacci sequence.)
Product	П	Product of terms in a sequence. $\prod_{i=m}^{n} s_i = s_m \cdot s_{m+1} \cdot \ldots \cdot s_n$	$\prod_{i=3}^{5} \frac{i}{i+1} = \frac{3}{4} \cdot \frac{4}{5} \cdot \frac{5}{6} = \frac{1}{2}$
Factorial	<i>n</i> !	$n! = \prod_{i=1}^{n} i$ = 1 \cdot 2 \cdot \cdot n 0! = 1	$5! = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$ $= 120$
Euler's number	е	Base of natural logarithms. $e = \sum_{i=0}^{\infty} \frac{1}{n!}$ $= \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots$ $\approx 2.71828\dots$	