Selected Symbols for Basic Mathematical/Statistical Modeling

These are the key mathematical symbols (other than $+,-, \cdot, /,=$, etc.) used in "Mathematical Models \& Linear Statistical Models: Basic Concepts \& Computations".

Concept	Symbol	Definition	Examples
Floor	\...」	Rounding down (towards $-\infty$) of a non-integral real number, to the next integer value.	$\begin{aligned} \lfloor 1.75\rfloor & =1 \\ \lfloor-1.75\rfloor & =-2 \\ \lfloor 1\rfloor & =1 \end{aligned}$
Ceiling	†...]	Rounding up (towards ∞) of a non-integral real number, to the next integer value.	$\begin{aligned} \lceil 1.75\rceil & =2 \\ \lceil-1.75\rceil & =-1 \\ \lceil 1\rceil & =1 \end{aligned}$
Exponent	b^{n} (superscript)	Number of times (not necessary integral) a base b is multiplied by itself in a product.	$\begin{aligned} x^{2} & =x \cdot x \\ 3^{4} & =3 \cdot 3 \cdot 3 \cdot 3=81 \end{aligned}$
Enumeration	$\begin{gathered} S_{i} \\ \text { (subscript) } \end{gathered}$	Numbered terms of an ordered sequence.	$\begin{aligned} \boldsymbol{S} & =\left\{s_{1}, s_{2}, s_{3}, \ldots\right\} \\ \boldsymbol{F} & =\{1,1,2,3,5, \ldots\} \end{aligned}$ (\boldsymbol{F} is Fibonacci sequence.)
Sum	\sum	Sum of terms in a sequence. $\sum_{i=m}^{n} s_{i}=s_{m}+s_{m+1}+\ldots+s_{n}$ (If the bounds m and n are well understood, they are often omitted from the \sum operator notation.)	$\begin{aligned} \sum_{i=1}^{4} f_{i} & =f_{1}+f_{2}+f_{3}+f_{4} \\ & =1+1+2+3 \end{aligned}$ (Sum of $1^{\text {st }} 4$ terms of Fibonacci sequence.)
Product	\prod	Product of terms in a sequence. $\prod_{i=m}^{n} s_{i}=s_{m} \cdot s_{m+1} \cdot \ldots \cdot s_{n}$	$\begin{aligned} \prod_{i=3}^{5} \frac{i}{i+1} & =\frac{3}{4} \cdot \frac{4}{5} \cdot \frac{5}{6} \\ & =\frac{1}{2} \end{aligned}$
Factorial	n !	$\begin{aligned} n! & =\prod_{i=1}^{n} i \\ & =1 \cdot 2 \cdot \ldots \cdot n \\ 0! & =1 \end{aligned}$	$\begin{aligned} 5! & =1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \\ & =120 \end{aligned}$
Euler's number	e	Base of natural logarithms. $\begin{aligned} e & =\sum_{i=0}^{\infty} \frac{1}{n!} \\ & =\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\ldots \\ & \approx 2.71828 \ldots \end{aligned}$	

