Introduction to Computational Complexity

Simply put, computational complexity is a measure of the work (i.e. time - more specifically,
computational operations) or space required for a given solution method for a stated problem.
Computational complexity theory is the branch of computer science that focuses on classifying problems
according to the computational complexity of their solutions. We thus use the term when discussing a

specific algorithm, a class of algorithms, or even all algorithms for solving a given problem.

Example: Searching an unsorted array

Imagine we have an unsorted sequence (e.g. array or list) of n elements, €1, €2, . . ., €,. To determine
whether a specific element or value e, is contained in the sequence, we generally have no choice but
to iterate over it until we find eg; if we reach the end of the array without finding it, then it isn’t

present. This is called a linear search.
« Given an input value eg, and an unordered sequence S with the elements eq, es, . . ., €,.
e Foreache; in S:

o If e; = ey, the item is found, and there is no need to continue. Return %, the position in the

sequence where eg was found.

 Return 0, indicating that e, was not found in .S.
Questions

1.Ife, € S:

o What is the smallest number of comparisons the algorithm above will make, before
returning?
o What is the largest number of comparisons that can be made?

o What is the expected number of comparisons?
2.Ifes & S

o What is the smallest number of comparisons the algorithm above will make, before
returning?
o What is the largest number of comparisons?

o What is the expected number of comparisons?



3. What is the time complexity of a linear search?
4. What is the space complexity (i.e. additional memory used) of a linear search?

In both of the above cases, we end up with an expected value for the number of comparisons (i.e. the

n+1,

time complexity) that's a linear function of n: for e, € S, we have 5

fores ¢ S, we have n.

In many cases, we'd like to be able to discuss the computational complexity in even more general
terms, ignoring coefficients and constant additive terms. Thus, we might say that whether or not
es € S, the time complexity of the linear search is "on the order of n". (If, instead of a linear function
of n, we had a second-order polynomial, we would say that the time complexity is on the order of n?,

and so on.)

Prior to the advent of computer science, this concept was used in analytic number theory, where we
might wish to characterize the behavior of some function in terms of bounds expressed as simpler
functions. In the late 19™ century, number theorist Paul Bachmann introduced the shorthand O(. . .)

for “order of”. Thus, in our example, we would say that the time complexity of a linear search is O(n)

In the 1970s. Donald Knuth introduced additional computer-science-specific definitions and
distinctions for these and other computational complexity concepts. As part of that, he referred to the
O symbol as the upper-case Greek letter omicron, rather than the Latin “O”. He also provided this
formal definition:

f(n) =0(g(n)) < Fk > 0,3ng:Vn > ng,|f(n)| < k-g(n)
In English, we can state this as

The function f(x) is of the order g(x), if and only there exists some k > 0, and some 7, such

f(n)| < k-g(n).

that for all n > ny,

Oversimplifying a bit, we can think of this definition as stating that if the number of operations (or the
space required) for an algorithm increases as the size of the problem n increases, in such a way that
over the long run, it is less than some function g(n) multiplied by a positive constant, then the

computational complexity of the algorithm is O(g(n)).

By itself, this may or may not be very informative: k - g(n) might in fact be far above f(n) and the
definition still holds, but that doesn’t tell us much about f(n). When we combine the O(g(n)) upper
bound with the £2(g(n)) lower bound - which we might express together as a ©(g(n)) - we start to
have something very powerful. Nonetheless, O(. . ) or “big O” notation, is a widely used shorthand

for talking about computational complexity of algorithms.

Example: Searching a sorted array via binary search



Imagine we now have a sorted sequence of 11 elements, eq, €2, . . . , €,, where there is some ordering
function d, such that d(e;) < d(e;+1),Vi = 1...n — 1 (i.e. the list is in ascending order, based on
the function d). Further, assume that the for any e; and e, d(e;) = d(e;) <= e; = ej; thats,
two elements of the sequence are considered equal if and only if the function d gives the same value
for both. Finally, assume that we don’t necessarily have to access the elements in order, but can access
any item in essentially constant time; that is, it does not take significantly more time to access ¢; than

to access e1, forany2in2...n.

To determine whether a specific element or value €, is contained in the sequence, we now have a
powerful alternative to linear search: Given any element e;, if d(e;) > d(e;), then we know that if

es, € S, it must be located before e; in the sequence, if it’s actually in the sequence at all; on the other
hand, if d(e;) < d(e;), then e; must be located after e; in the sequence (if at all). If we pick e;
carefully - in this case, we pick it right in the middle of the portion of the sequence we're searching -
then we divide the sequence in half each time we select and compare a new e; to e,. This is called a

binary search.
¢ Given

o The input value e, to search for.

o The ordering function d.

o The sequence S with the elements eq, €9, . . ., €, ordered such that
d(e;) < d(ei1),Vi=1...n—1.

o leta = 1.
o Letb = n.
e Whilea < b:

o Letj = [52].
o Ifd(e;) = d(es):
= Found! Return 7, the position in the sequence where e, is located.
o If d(e;) > d(es):
wletb=75— L
Otherwise, if d(e;) < d(es):
mleta=75+1.

e Return —a, which is the negative of the position where e, could be inserted into .S to preserve



its ordering.

Note that we could state the above algorithm recursively, as follows:
To search a range of a sequence for an item,

o If the range to search is empty, then it doesn't contain the searched-for item; otherwise, compare
the searched-for item to the item at the midpoint of the range.

o If the searched-for item isn’'t found at the midpoint, then use the comparison to determine which
half-range (above or below the midpoint) should become the new search range.

e Search the new range for the item.
Questions

1.Ife, € S:

o What is the smallest number of comparisons the algorithm above will make, before
returning?
o What is the largest number of comparisons that can be made?

o What is the expected number of comparisons?
2.Ifes & S:

o What is the smallest number of comparisons the algorithm above will make, before
returning?
o What is the largest number of comparisons?

o What is the expected number of comparisons?
3. What is the time complexity of a binary search?

4. What is the space complexity of a binary search?

Growth in search space vs. solution algorithm

Note that the size of the search space for a solution to a problem may grow much more quickly than
the size of the problem inputs - but that doesn’t mean that the work required for the solution

algorithm grows at the same rate as the solution search space.

For example, consider sorting a sequence of distinctly valued items. If there are n items, then there are
n! distinct orderings of those items - only one of which would be considered sorted (assuming we are

restricting ourselves to ordering by ascending value). However, we would be very foolish to search for



the sorted order by brute force, iterating over the n! possible orderings until one is found that satisfies
the order relationship across all of its items. Instead we will probably employ one of the widely used
sorting algorithms (merge sort, quick sort, heap sort, etc.), which typically have time complexity of

O(nlogn) - which is much smaller than O(n!).

On the other hand, we can see that verifying whether a given sequence is in order is quite simple:
compare each item in turn to the item following it; if d(e;) < d(e;41),fori = 1...n — 1, then the
sequence is in ascending order. This verification uses (n — 1) comparisons and thus has time
complexity O(n) which is less than the work required to perform the sort itself. In fact, there are

many cases where verification of a solution is less difficult than finding the solution.

Example: Merge sort

The recursive algorithm for a merge sort is as follows:
To sort a sequence S containing 7 items, using the ordering function d:

e If n = 1, the sequence is already sorted; return.

« Divide the sequence into 2 subsequences: S7, containing the first [%J elements of S; and So,

containing the remaining elements of .S.
e Sort S7 and S5 separately (recursive invocation).
(The remaining steps constitute the merge phase of the algorithm.)
« Create an empty sequence S..
e While S and S5 contain elements:

o Compare the first elements of S and S3 using d, to find the lower-valued of the two.

o Remove the lower-valued element from its respective sequence, and append it to S..
 Append all remaining elements of S7 or S5 (Whichever is not empty) to S,, preserving their order.

« Replace the contents of S with the contents of S..
Questions

1. What is the time complexity of the merge phase of the algorithm? (It may help to think of it in

terms of the minimum and maximum number of comparisons we might need to make between



two sequences, each originally of size % in order to produce the merged sequence of size n.)

2. Each time we split a sequence into 2 smaller sub-sequences of equal (or nearly equal) size, we can

think of this as a branch in a tree:

n items
n/2 items n/2 items
n/4 items n/4 items n/4 items n/4 items

In the example above, the tree is 3 levels deep. If we start with a sequence of nn items, how many

levels deep will the tree get, until all of its leaves (terminal node, from which no branches

emanate) have a single item?
3. Can we use the answers to 1 & 2 to estimate the time complexity of merge sort?

4. What is the space complexity of merge sort? That is, how much additional memory (in “big O”
terms) is required, beyond the original sequence itself? (For a recursive algorithm, don'’t forget
that each recursive invocation will generally require stack space.)

Analyzing time complexity of recursive algorithms

Some algorithms are most easily expressed in a recursive form (though we may not necessarily

implement them that way; remember that recursion can always be translated into iteration). In addition

to (sometimes) making it easier to verify the correctness of an implementation, a recursive algorithm
gives us some powerful mathematical tools for examining the computational complexity of the

algorithm.

One of these tools is the Master Theorem (also known as the Master Method). To use this, we express
the time complexity for executing an algorithm on 7 items in terms of the time complexity for
executing recursively on the smaller subproblems, along with the time complexity for creating the
smaller subproblems and then combining the solutions from the subproblems into a solution to the

overall problem:



T(n)=a-T(

where

T'(n) = time complexity of the algorithm for a problem of size n.
a = number of recursive calls.
b = input shrinkage factor.

d = exponent in time complexity of split/combine step.

If we can express T'(n) as above, then the Master Theorem instructs us to compute (b2 — a), and use

the result as a discriminant to find T'(n):

O(nlogn), ifd? —a=0.
T'(n) = { O(n?), if ¥4 —a > 0.
O(n&),  ifpd —a < 0.

Example: Using the Master Theorem to estimate complexity of
binary search

Each time we split the sequence S (with n elements) into 2 sub-sequences, we make 1 recursive call,
to search the relevant sub-sequence with % elements. The time complexity for splitting the sequence is
constant (it doesn’t depend on the size of the sequence); similarly, when the recursive call completes, it
returns the final search result, so there is essentially no work expended after that point. So, for binary

search, we have,

Here, (b — a) = (2° — 1) = 0, so from the above,
T(n) = O(n%logn) = O(n’logn) = O(logn). Thus, the time complexity of binary search is
O(logn).

Example: Using the Master Theorem to estimate complexity of
merge sort

Each time we split the sequence S (with n elements) into 2 sub-sequences, we make 2 recursive calls,



to sort sequences with %‘ elements. The time complexity for splitting the sequence is constant (it
doesn’t depend on the size of the sequence), but re-combining the sequences after both are sorted is
O(n). Thus, for merge sort,

Here, (b% — a) = (2! — 2) = 0, so from the above,
T(n) = O(ntlogn) = O(n'logn) = O(nlogn). Thus, the time complexity of merge sort is
O(nlogn).



